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Abstract. Nonlinear waves in a forced channel flow are considered. The forcing is due to a bottom obstruction.
The study is restricted to steady flows. A weakly nonlinear analysis shows that for a given obstruction, there are two
important values of the Froude number, which is the ratio of the upstream uniform velocity to the critical speed of
shallow water waves, FC > 1 and FL < 1 such that: (i) when F < FL, there is a unique downstream cnoidal wave
matched with the upstream (subcritical) uniform flow; (ii) when F = FL, the period of the cnoidal wave extends
to infinity and the solution becomes a hydraulic fall (conjugate flow solution) – the flow is subcritical upstream
and supercritical downstream; (iii) when F > FC , there are two symmetric solitary waves sustained over the site
of forcing, and at F = FC the two solitary waves merge into one; (iv) when F > FC , there is also a one-parameter
family of solutions matching the upstream (supercritical) uniform flow with a cnoidal wave downstream; (v) for a
particular value of F > FC , the downstream wave can be eliminated and the solution becomes a reversed hydraulic
fall (it is the same as solution (ii), except that the flow is reversed!). Flows of type (iv), including the hydraulic
fall (v) as a special case, are computed here using the full Euler equations. The problem is solved numerically by
a boundary-integral-equation method due to Forbes and Schwartz. It is confirmed that there is a three-parameter
family of solutions with a train of waves downstream. The three parameters can be chosen as the Froude number,
the obstruction size and the wavelength of the downstream waves. This three-parameter family differs from the
classical two-parameter family of subcritical flows (i) but includes as a particular case the hydraulic falls (ii) or
equivalently (v) computed by Forbes.

Key words: boundary-integral method, hydraulic fall, Korteweg–de Vries, potential flow, water waves.

1. Introduction

The theory of free-surface potential flows past submerged obstacles is a classical subject of
fluid mechanics. Linearised solutions can be found in Lamb [1, Chapter 9]. Accurate nonlinear
solutions were obtained numerically by Forbes and Schwartz [2], Vanden-Broeck [3], Forbes
[4], Dias and Vanden-Broeck [5] and others. It is known that there are both steady and un-
steady solutions. Here we restrict our attention to steady solutions (the reader who is interested
in unsteady solutions is referred to Grimshaw and Smyth [6], Milewski and Vanden-Broeck
[7] and to the references cited in those papers).

Following Forbes and Schwartz [2] and Forbes [4], we choose the obstacle to be a semi-
circular cylinder. Results similar to those presented can be obtained with different obstacle
shapes.

The velocity and the height of the uniform flow far upstream are denoted by U and H ,
respectively. The Froude number upstream is defined by

F = U√
gH

, (1.1)
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Figure 1. Sketch of the flow. A uniform flow of velocity U and height H approaches a semi-circular obstruction.
The radius of the circular bump is R.

where g is the acceleration due to gravity. If F < 1, the flow is subcritical. If F > 1, the flow
is supercritical. If F > 1 on one side and F < 1 on the other side, the flow is critical. The
terms critical, subcritical and supercritical come from linear theory.

Three classes of steady solutions have been computed so far. The first class (i) is subcritical.
It is a two-parameter family of solutions in which the flow contains a train of waves down-
stream and is uniform upstream. The second class (ii) is critical. It is a one-parameter family
of waveless solutions. The profiles are non symmetric and the flow is subcritical on one side
and supercritical on the other. The third class (iii) is supercritical. It is a two-parameter family
of solutions. The profiles are symmetric and waveless in the far field. The results of Vanden-
Broeck [3] show that the subcritical class (i) and the supercritical class (iii) are disconnected
in the sense that there is an interval of values of the Froude number in which both types of
solutions fail to exist.

In this paper we concentrate on supercritical solutions which are wavy downstream (type
(iv) of the abstract). A limiting case is the hydraulic fall, in which the waves downstream
disappear. Hydraulic falls were observed experimentally and computed numerically by Forbes
[4] (for a circular object) and computed numerically by Dias and Vanden-Broeck [5] (for a
triangular object). We generalise these findings and demonstrate numerically that there is a
three-parameter family of supercritical flows with waves downstream.

2. Formulation

The formulation of the problem follows closely that of Dias and Vanden-Broeck [5] and
Forbes and Schwartz [2]. The steady irrotational flow of an incompressible inviscid fluid past
a submerged obstruction is considered (see Figure 1). The x∗-axis is chosen to be along the
bottom of the channel. The y∗-axis is chosen to go through the middle of the obstruction. The
flow is assumed to be uniform far upstream. The dimensionless circle radius

α = R

H
(2.1)

is introduced. The free surface is described by y∗ = H + η∗(x∗).
The velocity potential satisfies Laplace’s equation in the interior of the fluid domain.

Bernoulli’s equation in the entire fluid takes the form

1
2ρ(u∗2 + v∗2) + ρgy∗ + p∗ = 1

2ρU 2 + ρgH, (2.2)
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where u∗ and v∗ are the horizontal and vertical components of velocity, p∗ the pressure and ρ

the fluid density.
The condition of no flow normal to the bottom y∗ = h∗(x∗) may be written

u∗h∗
x∗ = v∗ at y∗ = h∗(x∗), (2.3)

where

h∗(x∗) =
{

(R2 − x∗2)
1
2 (|x∗| ≤ R),

0 (|x∗| > R).
(2.4)

The dynamic condition on the free surface can be written by applying Equation (2.2) on
the free surface:

1
2ρ(u∗2 + v∗2) + ρgη∗ = 1

2ρU 2. (2.5)

3. Weakly nonlinear analysis

One of the main difficulties in computing free-surface flows is to find the number of indepen-
dent parameters. For that purpose, a weakly nonlinear analysis can be useful.

Let L be the typical wavelength, which is yet to be determined. We use L and the upstream
water depth H as the horizontal and vertical scales respectively. The following dimensionless
variables are introduced:

ε = (H/L)2 � 1 (a small parameter),

(x, y) = (ε1/2x∗, y∗)/H,

(u, v) = (u∗, ε−1/2v∗)/
√

gH,

h(x) = ε−2h∗(x∗)/H (small bump assumption).

Let the free-surface elevation and Froude number be described by

η∗

H
= εη, F = 1 + εµ. (3.1)

The velocity potential is expanded as well in powers of the small parameter ε.
After plugging the various expansions into the governing equations and boundary condi-

tions, one obtains a sequence of equations of successive orders. After a few steps, one derives
the so-called forced Korteweg–de Vries (fKdV) equation. We believe that the first derivation
of the fKdV equation was performed by Akylas [8] (see also Mielke [9] and Kirchgässner
[10] for more rigorous derivations). Shen [11, 12] studied the validity of the fKdV equation.
The fKdV equation is also given in the monograph by Baines [13, Equation (2.6.2) and the
discussion which follows].

Since the present paper deals with stationary solutions, we only write the stationary forced
Korteweg–de Vries equation:

1
6ηxxx + 3

2ηηx − µηx = − 1
2hx. (3.2)

In the absence of forcing, Equation (3.2) reduces to the classical Korteweg–de Vries (KdV)
equation. The first integral of Equation (3.2) is

ηxx + 9
2η

2 − 6µη = −3h, (3.3)
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under the condition that the flow is uniform far upstream.
For clarity, we also rewrite the fKdV Equation (3.3) in physical coordinates:

H 3η∗
x∗x∗ + 9

2η∗2 − 6H(F − 1)η∗ = −3Hh∗(x∗). (3.4)

For obstructions whose height is comparable with the length of the obstruction base (‘local’
forcing), the forcing can be approximated by the Dirac delta function in the dimensionless long
wave coordinates [12]:

h(x) = Qδ(x).

In the present study, we consider semi-circular bumps: y∗ = √
R2 − x∗2. In dimensionless co-

ordinates, the semi-circular bump becomes y = ε− 1
2
√

εα2 − x2, with support [−√
ε α,

√
ε α],

which is
√

ε times smaller than the height α. Hence h(x) can be approximated by Qδ(x). This
height α can be viewed as the amplitude of the forcing. Hence ε2 = α, i.e.

ε = √
α. (3.5)

Equation (3.5) determines the typical wavelength L. The amplitude Q is determined by the
area of the bump:

∫ ∞

−∞
h∗(x∗) dx∗ ≈

∫ ∞

−∞
ε2HQδ(x) d(ε−1/2Hx) = area of the bump.

This leads to

Q = (π/2)α5/4.

Let us now concentrate on solutions of Equation (3.3) with local forcing:

ηxx + 9
2η

2 − 6µη = −3Qδ(x). (3.6)

In order to study the solutions of the fKdV Equation (3.6), it is convenient to recall first the
solutions of the KdV Equation (Q = 0). It has two fixed points: η = 0 and η = 4

3µ. Integrating
the KdV equation once we have

η2
x = 6µη2 − 3η3 + C. (3.7)

Solutions of (3.7) depend on the sign of µ. In other words, the solutions depend on whether
the flow is subcritical or supercritical.

3.1. SUBCRITICAL FLOW UPSTREAM

When the flow is subcritical, µ < 0. The fixed point η = 0 is a center, while the fixed point
η = 4

3µ is a saddle point. The phase plane is shown in Figure 2(a). The bounded solutions are
either cnoidal waves going around the center, or a solitary wave going to η = 4

3µ at infinity.
The solitary wave is obtained when C = 32

9 |µ|3 and its profile is given by

η = 4
3µ + 2|µ|

cosh2
(
x

√
3
2 |µ|

) . (3.8)
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Figure 2. Phase planes corresponding to Equation (3.7) in the unforced case. (a) Subcritical flow (µ < 0). (b)
Supercritical flow (µ > 0). The dots represent the fixed points. The outer trajectories are homoclinic solutions,
while the inner trajectories are periodic solutions.

In the presence of forcing (Q = 0), we look for solutions which are continuous and
bounded for x ∈ R, and satisfy

ηxx + 9
2η

2 − 6µη = 0 for x = 0, ηx(0+) − ηx(0−) = −3Q.

The jump condition is obtained by integrating Equation (3.6) from 0− to 0+.
Since the flow is assumed to be uniform upstream with η = 0, the solution for x < 0

is necessarily η = 0. At x = 0+, the slope of the free surface must be −3Q. At the same
time, the phase plane shown in Figure 2(a) indicates that the absolute value of the jump of ηx

at η = 0 cannot be greater than 4
3

√
2|µ| 3

2 . Therefore, for a given upstream Froude number
less than unity, there are three possibilities: (i) the obstacle is too large and there is no steady
solution, (ii) the obstacle has the size

Qmax = 4
9

√
2|µ|3/2,

which makes the solution jump on the solitary wave solution (3.8) (hydraulic fall), (iii) the
amplitude of the forcing is less than Qmax and the solution jumps on a cnoidal wave solution.
There is a unique way to perform this jump. When Q → 0, the amplitude of the oscillations
tends to zero as well. The solutions are summarized in the (µ,Q)-plane in Figure 3 and
corresponding profiles are shown in Figure 4.

3.2. SUPERCRITICAL FLOW UPSTREAM

When the flow is supercritical, µ > 0. The fixed point η = 0 is a saddle point, while the fixed
point η = 4

3µ is a center. The phase plane is shown in Figure 2(b). The bounded solutions are
either cnoidal waves going around the center, or a solitary wave going to η = 0 at infinity.
The solitary wave is obtained when C = 0 and its profile is given by

η = 2µ

cosh2
(
x

√
3
2µ

) . (3.9)

In the presence of forcing (Q = 0), we look for solutions which are continuous and
bounded for x ∈ R, and satisfy

ηxx + 9
2η

2 − 6µη = 0 for x = 0, ηx(0+) − ηx(0−) = −3Q.
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Figure 3. Description of solutions in parameter space. The horizontal axis is the value of the Froude number
relative to unity. The vertical axis is the obstacle size. The solid line is given by Q = 4

9

√
2|µ|3/2, the dashed line

by Q = 4
9

√
2µ3/2, the dotted line by Q = 8

9

√
2µ3/2.

Figure 4. (a) Hydraulic fall with subcritical flow upstream, corresponding to a solution along the solid line in
Figure 3. (b) Upstream (subcritical) uniform flow matched with a cnoidal wave downstream. Such a solution lies
in the region called ‘one wavy solution’ in Figure 3.

Since the flow is assumed to be uniform upstream with η = 0, the solution for x < 0
necessarily follows the solitary wave (3.9). At x = 0, the jump in the slope of the free surface
must be equal to −3Q. At the same time, the phase plane shown in Figure 2(b) indicates that
the absolute value of the jump cannot be greater than 8

3

√
2µ

3
2 . There are more possibilities

than in the subcritical case: (i) the obstacle is too large and there is no steady solution, (ii) the
obstacle has the size

Qmax = 8
9

√
2µ3/2,

which makes the solution jump back on the solitary wave solution (3.9) along η = 4
3µ –

unique solitary wave, (iii) the amplitude of the forcing is less than Qmax and the solution can
either jump back on the solitary wave solution (3.9) (there are two possibilities: one to the left,
one to the right of η = 4

3µ), or jump on a cnoidal wave solution (there are infinitely many
possibilities but the wavelength of the cnoidal wave is bounded below). If the obstacle has the
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Figure 5. (a) Upstream supercritical flow. The forcing can sustain two symmetric solitary waves. (b) Solution
matching the upstream supercritical flow with a cnoidal wave downstream. All these solutions lie in the region
called ‘two solitary waves + infinity of wavy solutions’ in Figure 3.

size

Q = 4
9

√
2µ3/2 = 1

2Qmax,

the wavelength of the cnoidal wave can vanish and one obtains again the hydraulic fall. It
is exactly the mirror image of the hydraulic fall obtained in Section 3.1. The solutions are
summarized in the (µ,Q)-plane in Figure 3 and corresponding profiles are shown in Figure 5.

The present paper is devoted to the wavy solution. For fixed µ (given Froude number) and
Q (given obstruction size), there is a one-parameter family of such solutions. The wavelength
is bounded below at some value and can go all the way to infinity to either of the solitary
waves. In Section 5, we present numerical evidence of such solutions for the fully nonlinear
problem.

4. Numerical scheme

The numerical scheme follows closely that of Forbes and Schwartz [2] and Forbes [4]. We
non-dimensionalise the problem by taking U as the unit velocity and H as the unit length. The
dimensionless volume discharge is therefore unity. From now on, all the new variables will be
dimensionless. For example, x and y will be the dimensionless coordinates. It is convenient at
this stage to introduce the complex variable z = x + iy. The z-plane is mapped into a ξ-plane
in which the bottom is a straight line by the transformation

ξ = ζ + iχ = 1

2

(
z + α2

z

)
, (4.1)

where α is defined by Equation (2.1). Following [14], we describe the free surface parametri-
cally by x = X(s) and y = Y (s), where s is the arclength. Therefore we require

X′2 + Y ′2 = 1, (4.2)

where primes denote derivatives with respect to s. We choose s = 0 at the point x = 0 on
the free surface (i.e. X(0) = 0). Equation (4.1) can then be used to define the values ζ(s) and
χ(s) of ζ and χ on the free surface. We also denote by φ(s) the value of φ at a point along the
free surface.
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Following Forbes and Schwartz [2] and Forbes [4], we derive the integral equation

π
[
φ′(s) ζ′(s)

ζ′2(s)+χ′2(s) − 2γ
]

=
∫ ∞

−∞
[φ′(t) − 2γζ′(t)][χ(t) − χ(s)] + 2γχ′(t)[ζ(t) − ζ(s)]

[ζ(t) − ζ(s)]2 + [χ(t) − χ(s)]2
dt

+
∫ ∞

−∞
[φ′(t) − 2γζ′(t)][χ(t) + χ(s)] + 2γχ′(t)[ζ(t) − ζ(s)]

[ζ(t) − ζ(s)]2 + [χ(t) + χ(s)]2
dt,

(4.3)

where the first integral in the right-hand side of (4.3) is a Cauchy principal value. The constant
γ is chosen as the undisturbed velocity at s = −∞ (a precise definition is given later).

Next Bernoulli’s equation on the free surface yields

[φ′(s)]2 + 2

F 2
[Y (s) − 1] = 1. (4.4)

This concludes the formulation of the problem as an integro-differential equation. We seek
three unknown functions X(s), Y (s) and φ′(s) satisfying (4.1)–(4.4). We solve this equation
numerically by introducing the mesh points

sI = −(N − 1)E

2
+ (I − 1)E, I = 1, . . . , N, (4.5)

the midpoints

sM
I = sI + sI+1

2
, I = 1, . . . , N − 1, (4.6)

and the unknowns X′
I = X′(sI ), Y ′

I = Y ′(sI ) and φ′
I = φ′(sI ), I = 1, . . . , N .

We satisfy (4.2) and (4.4) at the mesh points sI and (4.3) at the mesh points sM
I . This leads

to 3N − 1 equations. Details on the finite-difference formulas used can be found in Forbes [4]
and Forbes and Schwartz [2]. One more equation is obtained by using Bernoulli’s equation to
define the undisturbed depth as s → −∞ by

γ2 + 2

γF 2
− 1 − 2

F 2
= 0. (4.7)

For given values of α and F , we now have 3N equations for the 3N + 1 unknowns X′
I , Y ′

I ,
φ′

I and γ. The last equation is obtained by fixing a third parameter. We found it convenient to
choose this parameter as the value of Y1. Therefore the last equation is

Y1 = δ, (4.8)

where δ is given. This system of 3N + 1 algebraic equations with 3N + 1 unknowns is solved
by Newton iterations. We note that the parameter δ has no physical meaning. Our approach
can be viewed as an inverse approach. We compute solutions for given values of α, F and δ.
Once a solution has been obtained, it can be interpreted as a solution characterised by given
values of α, F and a third parameter such as the wavelength or amplitude of the downstream
waves.
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Figure 6. Hydraulic falls for various values of α. The flow is subcritical on the left and supercritical on the right.
The profiles from bottom to top correspond to α = 0·3, 0·5, 1·0 and 2·0. The corresponding Froude numbers are
F = 1·36, 1·58, 2·01 and 2·63.

5. Numerical results

The numerical scheme described in Section 4 was used to calculate solutions for various
values of α, F > 1 and δ. Most results presented were obtained with N = 130. We repeated
some of the calculations with N = 260 to check that the results presented are correct within
graphical accuracy.

Our numerical results agree with the weakly nonlinear theory of Section 3.2 in the sense
that there is a one-parameter family of waveless solutions (hydraulic fall) and a three-parameter
family of solutions with waves as s → −∞. The three parameters are here chosen as α, F and
δ. These solutions lie in the region called ‘two solitary waves + infinity of wavy solutions’
in Figure 3. The computations were focused to a neighborhood of the dashed line ‘hydraulic
fall.’
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Figure 7. (a) Computed free surface profiles for α = 0·3 and F = 1·36. The solid curve is a waveless solution.
(b) A typical free-surface profile corresponding to a member of the one-parameter family of solutions for α = 0·3
and F = 1·355.

The one-parameter family of waveless solutions is a sub-family of the three-parameter
family. We can compute it directly by modifying the scheme of Section 4 by allowing F and
δ to be unknowns. We then need two extra equations. These are obtained by forcing the free
surface to be without waves as s → −∞ with the two conditions

Y ′
1 = Y ′

2 = 0. (5.1)

The parameter is then α. Typical hydraulic falls are shown in Figure 6. Note that the uniform
flow with constant velocity U and constant depth H is on the far left in Figure 5(b) and on the
far right in the numerical results. These solutions were found to be in close agreement with
the solutions previously computed by Forbes [4]. As α → 0, F → 1 and the flow reduces to a
uniform stream. Solutions exist for arbitrary large values of α. We note that solutions similar
to those in Figure 6 were obtained by a different numerical method for triangular obstacles
(Dias and Vanden-Broeck [5]).

Particular members of the three-parameter family of solutions are shown in Figure 7(a).
For α = 0·3, the waveless solution of Figure 6 corresponds to F = 1·36. The profiles of
Figure 7(a) are for these values of α and F and various values of δ. The results show that we
recover the hydraulic fall for a particular value of δ. Of course if we fix α = 0·3 and a value
of F = 1·36, we do not recover the hydraulic fall by varying δ. All the profiles have then
waves downstream. This is illustrated in Figure 7(b), where we show a free-surface profile for
α = 0·3, F = 1·355.



Generalised critical free-surface flows 301

Finally let us mention that the solutions in Figure 7 will only satisfy the radiation condition
if the flows are from the right to the left. On the other hand no radiation condition needs to be
satisfied for the hydraulic falls of Figure 6 and the flow can be either to the right or to the left
since potential flows are reversible.

6. Conclusion

We have considered steady nonlinear free surface flows past a submerged obstacle. Both
weakly nonlinear and fully nonlinear solutions were presented. The weakly nonlinear theory
enabled a systematic investigation of the various types of solutions and of the corresponding
numbers of independent parameters. Previous calculations by [2], [4], [5] and others have
provided fully nonlinear numerical solutions for all the types of solutions predicted by the
weakly nonlinear theory except one. The numerical computations described in Sections 4 and
5 provide solutions for this previously missing type of fully nonlinear solutions.
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